To understand this phenomenon further structure determinations of crystalline adducts of related pairs (e.g. digitoxigenin and digirezigenin 1:1) are now in progress.

The authors thank Dr C. Lindig (Berlin) for supplying (21S)-methyldigitoxigenin crystals and Drs S. Vladimirov and D. Żivanov-Stakić (Beograd) for supplying crystals of the other title compounds. Thanks are also due to Professor E. Parthé (Geneva) for stimulating discussions, and to Mr P. Leibnitz (Berlin) and Mrs Gy. Tóth-Csákvári (Budapest) for their assistance.

This joint research was sponsored financially in Hungary by the Hungarian Research Fund, Grant No. OTKA 1028, and in Yugoslavia by the Research Foundation of the Socialist Autonomous Province Vojvodina.

References

Argay, Gy., Kálmán, A., Ribár, B., Vladimirov, S. \& ŽivanovStakić, D. (1987). Acta Cryst. C43, 922-926.
Bloss, F. D. (1971). Crystallography and Crystal Chemistry, pp.
249-250. New York: Holt, Rinehart \& Winston.
Crowfoot, D. (1935). Chem. Ind. pp. 568-569.

Declercq, J.-P., Germain, G. \& King, G. S. D. (1977). Abstr. 4th Eur. Crystallogr. Meet., Oxford, pp. 279-280.
Dunitz, J. D. (1979). X-ray Analysis and the Structure of Organic Molecules, pp. 106-111. Ithaca: Cornell Univ. Press.
Enraf-Nonius (1982). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Go, K. \& Bhandary, K. K. (1989). Acta Cryst. B45, 306-312.
Höhne, E. \& Preiffer, D. (1983). Stud. Biophys. 97, 81-86.
Kálmán, A., Argay, Gy., Fülöp, V., Ribár, B. \& Lazar, D. (1987). Acta Cryst. A43, S66-S67.

Kálmán, A., Argay, Gy., Ribár, B., Vladimirov, S. \& ŽivanovStakić, D. (1984). Croat. Chem. Acta, 57, 519-528.
Kálmán, A., Fülöp, V., Argay, Gy., Ribár, B., Lazar, D., Živanov-Stakıć, D. \& Vladimirov, S. (1988). Acta Cryst. C44, 1634-1638.
Karle, I. L. \& Karle, J. (1969). Acta Cryst. B25, 434442.
Kitaigorodsky, A. I. (1961). Organic Chemical Crystallography, pp. 5-17. New York: Consultants Bureau.
Messerschmidt, A., Höhne, E. \& Megges, R. (1981). Cryst. Struct. Commun. 10, 149-156.
Prasad, L. \& Gabe, E. J. (1983). Acta Cryst. C39, 273-275.
Ribár, B., Argay, Gy., Kálmán, A., Vladimirov, S. \& ŽivanovStakić, D. (1983). J. Chem. Res. (M), pp. 1001-1042.
Rohrer, D. C., Fullerton, D. S., Kitatsuii, E., Nambara, T. \& Yoshil, E. (1982). Acta Cryst. B38, 1865-1868.
Scharfenberg-Pfeiffer, D., Höhne, E. \& Wunderwald, M. (1987). Cryst. Res. Technol. 22, 1403-1408.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Pseudoinversion Centers in Space Group $\boldsymbol{P} \overline{1}$ and a Redetermination of the Crystal Structure of 3,4-Dimethoxycinnamic Acid. A Study of Non-Crystallographic Symmetry

By Gautam R. Desiraju,* Joseph C. Calabrese and Richard L. Harlow
Central Research and Development Department, E. I. Du Pont de Nemours and Company, Inc., Experimental Station, Wilmington, Delaware 19880, USA

(Received 28 June 1989; accepted 30 July 1990)

Abstract

A survey of the $11691 P \overline{1}$ crystal structures in the Cambridge Structural Database shows that 1166 have $Z=4$. Of these, a mere 20 have local pseudocenters of symmetry relating the atoms in the two halves of the asymmetric unit. The coordinates of these local pseudocenters often include the special values of $0, \frac{1}{4}$ and $\frac{1}{2}$, but can also be perfectly general. As an example of the latter, the crystal structure of 3,4-dimethoxycinnamic acid $\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}, M_{r}=208 \cdot 21\right)$ was re-examined at both room temperature and at 173 K . The poor refinement reported in the original

^[* Permanent address: School of Chemistry, University of Hyderabad, PO Central University, Hyderabad 500 134, India.]

study of this compound was ascribed to the low data/parameter ratio and the presence of the pseudocenter. The present study, however, clearly demonstrates that the refinement is unaffected by the presence of the pseudocenter when the data/ parameter ratio is reasonable (>5). This could be true in this specific case because the center is located at a general position: $0.217,0.433,0.319$. At room temperature, $\quad a=8.449$ (1),$\quad b=15.034$ (2),$\quad c=$ 8.449 (1) $\AA, \quad \alpha=99.47$ (1),$\quad \beta=94.57$ (1), $\quad \gamma=$ $101.53(1)^{\circ}, V=1029 \AA^{3}, 1893$ reflections, 367 variables, $R=0.041, \quad w R=0.038$. At $173 \mathrm{~K}, a=$ 8.412 (2) $, \quad b=14.959(2), \quad c=8.341$ (2) $\AA, \quad \alpha=$ $100 \cdot 28(2), \quad \beta=94.80(2), \quad \gamma=101 \cdot 83(2)^{\circ}, \quad V=$ $1003 \AA^{3}, 2543$ reflections, $R=0.041, w R=0.040$.
(C) 1991 International Union of Crystallography

Table 1. Summary of Cambridge database survey

Space group	Total Number	Z	Number with Z	$\%$
$P \bar{T}$	11691	4	1166	$10 \cdot 0$
$P 2_{1}$	4205	4	686	$16 \cdot 3$
$P C$	255	4	55	21.6
$P 2_{1} / c$	24859	8	1393	5.6
$P 2_{1} 2_{2} 2_{2}$	7220	8	390	5.4
$P b c a$	2822	16	98	3.5

Introduction

The presence of multiple molecules in the asymmetric unit, in other words symmetry-independent molecules, is a familiar phenomenon among organic crystal structures but little has been done to correlate or even compare data on such compounds. With the rising interest in organic crystal structure prediction (Desiraju, 1987, 1989; Scheffer, 1987), it would be useful to further understand this phenomenon in terms of the principles of packing or even to ascertain if there is a relationship between its occurrence and attributes such as chemical functionality, molecular weight or crystal system. Realistically, it is impossible, at least at the present time, to make predictions about an effect as subtle as the presence of two or more symmetry-independent molecules in a crystal. However, the basic tool for the systematic examination of crystal structures, the Cambridge Structural Database, is readily available (Allen, Kennard \& Taylor, 1983). Hence we decided to examine a small subset of structures which crystallize in the space group $P \overline{1}$ with Z, the number of molecules in the unit cell, equal to 4 and further where the symmetry-independent molecules are related by additional pseudoinversion symmetry.

The general principles to rationalize the crystal structures of simple organic compounds are now well established and the close-packing principle provides a satisfactory explanation for the prevalence of certain space groups and crystal systems (Kitaigorodskii, 1973). It is not necessary to invoke the presence of symmetry-independent molecules to understand why space groups like $P 2_{1} / c, P 2_{1}, P \overline{1}$, $P 2_{1} 2_{1} 2_{1}$ and $P b c a$ are favored for organic crystal structures. Indeed, although structures with symmetry-independent molecules are more common in the lower-symmetry space groups and crystal systems (Padmaja, Ramakumar \& Viswamitra, 1990), they do not occur very frequently. The statistics given in Table 1, from the 1988 version 3.1 of the Cambridge Database (69691 entries), are pertinent.

As can be seen in the table, the occurrence of multiple molecules in the asymmetric unit seems to be more common in the space groups $P \overline{1}, P 2_{1}$ and $P c$. We initially considered the $P 2_{1}$ and $P c$ structures. However, an examination of the $55 P c$ structures showed that at least 25 of them may be described as a reduction in symmetry from $P 2_{1} / c$ packing with the
true center in $P 2_{1} / c$ being replaced by a pseudocenter. A similar situation is obtained in around 60 of the $686 P 2_{1}$ structures where $Z=4$. These structures are merely variations of $P 2_{1} / c$ packing with the pseudocenter being 'global', in other words, generating approximate molecular positions throughout the crystal. In the large majority of the $P 2_{1}$ structures, however, there do not seem to be obvious orientational relationships between symmetry-independent molecules. In addition, some of the space-group assignments, especially of the Pc structures, are ambiguous because of order-disorder problems. For all these reasons, the structures in these space groups were not examined further.

From a packing viewpoint it seemed to be of greater interest to examine structures which, rather than being lower-symmetry derivatives of common space groups, contain higher or 'extra' symmetry. Such a situation arises in $P \overline{1}$ when $Z=4$ if the symmetry-independent molecules are further related by a pseudocenter of symmetry. Such a pseudocenter is 'local' rather than 'global' in that it relates only pairs of symmetry-independent molecules. This curious phenomenon was observed earlier (Desiraju, Kamala, Kumari \& Sarma, 1984) by one of us in a structural study of 3,4-dimethoxycinnamic acid (CEMJOT). The room-temperature analysis of this crystal was quite problematic and prompted a reexamination of the structure at low temperature to establish if the problems associated with the analysis were related to the non-crystallographic symmetry relationships in the crystal.

Experimental

Crystals of 3,4-dimethoxycinnamic acid were grown from a $1: 1$ mixture of acetone and methanol by slow evaporation. The crystals grew as elongated plates and, as noted in the original work (Desiraju, Kamala, Kumari \& Sarma, 1984), typically had many visible striations. It was however possible to find small crystals which appeared relatively free of defects as well as large crystals which seemed to have clear sections. Since the crystals were found to shatter rather than cleave, it was the small, intact crystals which were used in this investigation.
All of the crystallographic studies were carried out on a Syntex P3 diffractometer equipped with a molybdenum tube $(\lambda=0.71069 \AA)$ and lowtemperature apparatus. Data were collected at both 173 K (labelled LT) and at room temperature (labelled RT). ω scans showed half-widths of somewhat less than 0.30°, which represent very reasonable values for the Syntex diffractometer. Both data sets were collected by the ω-scan technique with a scan range of $1 \cdot 2^{\circ}$ and scan speeds which ranged from 2.0

Table 2. Comparison of the crystallographic information used in various studies of 3,4-dimethoxycinnamic acid

	GRD	RT	LT
Crystal size (mm)	$0.1 \times 0.03 \times 0.4$	$0.30 \times 0.15 \times 0.47$	$0.30 \times 0.15 \times 0.47$
$a(\AA)$	8.448 (3)	8.449 (1)	8.412 (2)
$b(\AA)$	15.072 (8)	15.034 (2)	14.959 (2)
$c(\AA)$	8.437 (6)	8.440 (2)	8.341 (2)
α ()	99.44 (5)	99.47 (1)	$100 \cdot 28$ (2)
β ()	94.71 (5)	94.57 (1)	94.80 (2)
$\boldsymbol{\gamma}$ (${ }^{(1)}$	101.59 (4)	101.53 (1)	101.83 (2)
$V\left(\AA^{3}\right)$	1031	1029	1003
T (K)	298	293	173
Z	4	4	4
$D_{x}\left(\mathrm{~g} \mathrm{~cm}^{3}\right)$	$1 \cdot 34$	1.344	1.379
$\mu\left(\mathrm{cm}^{-1}\right)$		0.96	0.98
Data collected	2925	5022	4916
2θ range (')	3-45	4-55	4-55
Transmission factors			0.97-0.98
Unique data [$I>3 \sigma(I)]$	725	1893	2543
Parameters	271	367	367
Data/parameter ratio	2.67	$5 \cdot 16$	6.92
R	$0 \cdot 107$	0.041	0.041
$\omega \cdot R$	0.136	0.038	0.040
Maximum residual density (e \AA^{-3})	0.44	$0 \cdot 18$	0.36
Located near		C(5)	C(21)

to $10 \cdot 0^{\circ} \mathrm{min}^{-1}$. Check reflections were monitored every 100 reflections; corrections for intensity variations were applied, as were Lorentz and polarization corrections. An empirical absorption correction, based on ψ-scan data, was applied to the lowtemperature data set.

Both structures were refined by full-matrix, leastsquares techniques starting with the atomic coordinates previously published. The H atoms were located and included in all of the refinements. The acid hydrogens, $\mathrm{H}(1)$ and $\mathrm{H}(21)$, were refined with full occupancy although the $\mathrm{C}-\mathrm{O}$ bond lengths are indicative of partial disordering of the $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}=\mathrm{O}$ moieties. Weights for the refinement were assigned as $\left[\sigma^{2}(I)+0 \cdot 0009 I^{2}\right]^{-1 / 2}$. The computer programs used for these analyses were written by one of us (JCC).

A summary of the crystallographic information is given in Table 2; for comparative purposes, the previously published (GRD) results are also included. Tables 3 and 4 list the atomic coordinates which resulted from the refinements of the RT and LT data sets respectively.* Selected bond parameters for both studies are compared with those in the original work in Tables 5 and 6. Fig. 1 compares the thermal parameters for the RT and LT studies; the reduction in temperature from 296 to 173 K ca:ases an average decrease in $B_{\text {eq }}$ of 45%. Fig. 2 is a packing diagram showing the locations of the pseudoinversion centers.

[^1]Table 3. Fractional coordinates and isotropic thermal parameters for the RT study

	\boldsymbol{x}	y	z	$B_{\text {iso }} / B_{\text {eq }}{ }^{*}\left(\AA^{2}\right)$
$\mathrm{O}(1)$	0.1763 (3)	0.5272 (2)	0.2435 (3)	4.8 (1)*
O(2)	0.0101 (3)	0.4179 (2)	0.3349 (3)	$5 \cdot 6$ (1)*
$\mathrm{O}(3)$	-0.2551 (3)	0.8433 (2)	-0.0971 (3)	4.8 (1)*
$\mathrm{O}(4)$	-0.5532 (3)	0.7891 (1)	-0.0512 (3)	4.6 (1)*
$\mathrm{O}(21)$	0.2543 (3)	0.3462 (2)	0.4244 (3)	5.0 (1)*
$\mathrm{O}(22)$	0.4198 (3)	0.4509 (1)	0.3211 (3)	4.6 (1)*
$\mathrm{O}(23)$	0.6944 (3)	0.0219 (2)	0.7374 (3)	$5 \cdot 2$ (1)*
$\mathrm{O}(24)$	0.9881 (2)	0.0748 (2)	0.6804 (3)	4.5 (1)*
C(1)	-0.2163 (4)	0.6433 (2)	0.0954 (4)	3.4 (1)*
C(2)	-0.1731 (4)	0.7190 (2)	0.0218 (4)	$3 \cdot 7$ (1)*
C(3)	-0.2876 (4)	0.7669 (2)	-0.0272 (4)	3.5 (1)*
C(4)	-0.4499 (4)	0.7370 (3)	-0.0009 (4)	$3 \cdot 5$ (1)*
C(5)	-0.4939 (5)	0.6616 (3)	0.0713 (5)	4.2 (1)*
C(6)	-0.3775 (5)	0.6146 (2)	0.1186 (4)	$4 \cdot 2$ (1)*
C(7)	-0.0900 (4)	0.5978 (2)	0.1471 (4)	3.9 (1)*
C(8)	-0.1028 (4)	0.5275 (2)	0.2248 (5)	4.3 (1)*
C(9)	0.0355 (4)	0.4882 (2)	0.2703 (4)	3.9 (1)*
C(10)	-0.0926 (4)	0.8743 (3)	-0.1288(6)	$5 \cdot 1$ (1)*
C(11)	-0.7223 (5)	0.7550 (4)	- 0.0481 (7)	$5 \cdot 8$ (2)*
C(21)	0.6468 (4)	0.2201 (2)	0.5436 (4)	$3 \cdot 3$ (1)*
C(22)	0.6061 (4)	0.1438 (2)	0.6194 (4)	3.7 (1)*
C(23)	0.7215 (4)	0.0967 (2)	0.5630 (4)	3.5 (1)*
C(24)	0.8825 (4)	0.1255 (2)	0.6310 (4)	$3 \cdot 5$ (1)*
C(25)	0.9239 (4)	0.2005 (2)	0.5564 (4)	$4 \cdot 2$ (1)*
C(26)	0.8050 (4)	0.2478 (2)	0.5133 (4)	$4 \cdot 0$ (1) ${ }^{\text {\% }}$
C(27)	0.5179 (4)	0.2669 (2)	0.4969 (4)	3.8 (1)*
C(28)	0.5326 (4)	$0 \cdot 3407$ (2)	0.4307 (4)	$3 \cdot 7$ (1)*
C(29)	0.3939 (4)	$0 \cdot 3813$ (2)	0.3902 (4)	3.6 (1)*
C(30)	0.5359 (5)	-0.0082 (3)	0.7807 (5)	4.6 (1)*
C(31)	$1 \cdot 1513$ (5)	0.0969 (4)	0.6393 (6)	5.2 (1)*
H(1)	0.2655 (65)	0.4897 (36)	0.2788 (61)	14.8 (18)
H(2)	-0.0643 (31)	0.7406 (17)	$0 \cdot 0032$ (28)	$3 \cdot 1$ (7)
H(5)	-0.6047 (37)	0.6392 (21)	0.0938 (36)	$5 \cdot 4$ (9)
H(6)	-0.4081 (36)	0.5634 (20)	0.1711 (36)	$4 \cdot 6$ (8)
H(7)	0.0170 (39)	$0 \cdot 6245$ (21)	0.1126 (37)	$5 \cdot 3$ (8)
H(8)	-0.2015 (32)	$0 \cdot 4980$ (19)	0.2565 (31)	$3 \cdot 3$ (7)
H(10)	-0.0965 (36)	0.9281 (21)	-0.1787 (36)	4.6 (8)
H(10)	-0.0597 (44)	0.8269 (25)	-0.2034 (43)	7.7 (12)
$\mathrm{H}\left(10^{\prime \prime}\right)$	-0.0117 (40)	0.8934 (21)	-0.0283 (39)	$6 \cdot 2$ (9)
H(11)	-0.7681 (33)	0.7974 (19)	-0.0909 (32)	3.6 (7)
H(11)	-0.7535 (44)	0.7518 (27)	$0 \cdot 0645$ (48)	8.5 (12)
H(11")	-0.7599 (50)	0.6928 (32)	-0.1194 (53)	11.4 (16)
H(21)	0.1451 (55)	0.3787 (31)	0.3817 (54)	$12 \cdot 7$ (16)
H(22)	0.4938 (33)	$0 \cdot 1186$ (19)	0.6427 (32)	3.9 (7)
H(25)	1.0399 (38)	$0 \cdot 2206$ (21)	0.5360 (35)	$5 \cdot 5$ (9)
H(26)	0.8428 (34)	0.3001 (19)	0.4655 (34)	$4 \cdot 2$ (8)
H(27)	0.4122 (39)	0.2381 (22)	0.5226 (38)	6.3 (9)
H(28)	0.6415 (35)	0.3690 (20)	0.4080 (34)	4.9 (8)
H(30)	0.4484 (37)	-0.0209 (20)	0.6930 (36)	$5 \cdot 3$ (8)
H(30')	0.5544 (35)	-0.0610 (21)	0.8398 (34)	$5 \cdot 4$ (8)
$\mathrm{H}\left(30^{\prime \prime}\right)$	0.5023 (32)	$0 \cdot 0416$ (19)	0.8506 (32)	45 (7)
H(31)	$1 \cdot 1992$ (43)	0.0474 (27)	0.6911 (43)	$8 \cdot 2$ (11)
H(31)	1.2003 (40)	0.1593 (25)	0.6842 (42)	6.8 (10)
H(31")	$1 \cdot 1488$ (44)	0.0894 (26)	0.5237 (46)	$8 \cdot 6$ (13)

Structure of 3,4-dimethoxycinnamic acid

In the original X-ray study (GRD) of 3,4-dimethoxycinnamic acid, CEMJOT (Desiraju, Kamala, Kumari \& Sarma, 1984), severe refinement problems were encountered. The two symmetry-independent molecules had to be refined individually in separate cycles to keep the refinement orderly, and even then, two of the atoms had to be fixed. Not surprisingly, the resulting bond distances were less than satisfactory. The poor refinement appeared to have two root causes. First, because the crystal was very small and the X-ray flux relatively low, the number of observed reflections was very small (see Table 2). Second, the molecules were seen to pack as dimers across pseudocenters of symmetry and it was suggested that correlations between the two molecules hindered the

Table 4. Fractional coordinates and isotropic thermal parameters for the LT study

	x	y	z	$B_{\text {iso }} / B_{\text {eq }}{ }^{*}\left(\AA^{2}\right)$
O(1)	0.1780 (2)	0.5292 (1)	0.2431 (2)	2.6 (1)*
$\mathrm{O}(2)$	0.0120 (2)	0.4189 (1)	0.3369 (2)	3.0 (1)*
O(3)	-0.2544 (2)	0.8444 (1)	-0.0998 (2)	2.6 (1)*
$\mathrm{O}(4)$	-0.5537 (2)	0.7903 (1)	-0.0541 (2)	$2 \cdot 5$ (1)*
$\mathrm{O}(21)$	0.2556 (2)	0.3460 (1)	0.4263 (2)	2.8 (1)*
$\mathrm{O}(22)$	0.4199 (2)	0.4519 (1)	0.3205 (2)	2.5 (1)*
O (23)	0.6965 (2)	0.0218 (1)	0.7391 (2)	$2 \cdot 7$ (1)*
O (24)	0.9924 (2)	0.0751 (1)	0.6807 (2)	2.5 (1)*
C(1)	-0.2173 (3)	0.6438 (2)	0.0927 (3)	2.0 (1)*
C(2)	-0.1722 (3)	0.7201 (2)	0.0174 (3)	2.0 (1)*
C(3)	-0.2873 (3)	0.7679 (2)	-0.0301 (3)	$2 \cdot 0$ (1)*
C(4)	-0.4509 (3)	0.7377 (2)	-0.0044 (3)	2.0 (1)*
C(5)	-0.4962 (3)	0.6625 (2)	0.0686 (3)	$2 \cdot 3$ (1)*
C(6)	-0.3806 (3)	0.6154 (2)	$0 \cdot 1172$ (3)	$2 \cdot 3$ (1)*
C(7)	-0.0894 (3)	0.5983 (2)	0.1453 (3)	$2 \cdot 1$ (1)*
C(8)	-0.1040 (3)	0.5281 (2)	0.2254 (3)	$2 \cdot 3$ (1)*
C(9)	0.0353 (3)	0.4892 (2)	0.2713 (3)	$2 \cdot 1$ (1)*
C(10)	-0.0900 (3)	0.8755 (2)	-0.1309 (3)	$2 \cdot 7$ (1)*
C(11)	-0.7249 (3)	0.7561 (2)	-0.0522 (4)	3.1 (1)*
C(21)	0.6481 (3)	0.2205 (2)	0.5431 (3)	1.9 (1)*
C(22)	0.6075 (3)	0.1441 (2)	0.6197 (3)	2.0 (1)*
C(23)	0.7243 (3)	0.0964 (2)	0.6640 (3)	2.0 (1)*
C (24)	0.8862 (3)	0.1254 (2)	0.6318 (3)	2.0 (1)*
C(25)	0.9271 (3)	0.2010 (2)	0.5555 (3)	2.2 (1)*
C(26)	0.8083 (3)	$0 \cdot 2480$ (2)	0.5117 (3)	$2 \cdot 2$ (1)*
C (27)	0.5191 (3)	0.2673 (2)	0.4974 (3)	$2 \cdot 1$ (1)*
C(28)	0.5353 (3)	0.3421 (2)	0.4309 (3)	$2 \cdot 1$ (1)*
C(29)	0.3965 (3)	0.3831 (2)	0.3900 (3)	$2 \cdot 0$ (1)*
C(30)	0.5352 (3)	-0.0077 (2)	0.7813 (3)	$2 \cdot 3$ (1)*
C(31)	1.1554 (3)	0.0979 (2)	0.6393 (3)	2.7 (1)*
H(1)	0.2676 (49)	0.5013 (27)	0.2775 (46)	$9 \cdot 2$ (12)
H(2)	-0.0610 (27)	0.7402 (15)	-0.0008 (25)	1.9 (5)
H(5)	-0.6094 (28)	0.6360 (17)	0.0889 (28)	$2 \cdot 9$ (6)
H(6)	-0.4108 (33)	0.5616 (18)	$0 \cdot 1620$ (32)	3.9 (6)
H(7)	0.0198 (32)	0.6250 (18)	$0 \cdot 1141$ (31)	$3 \cdot 7$ (6)
H(8)	-0.2056 (27)	0.4989 (16)	0.2561 (26)	$2 \cdot 0$ (5)
H(10)	-0.0917 (28)	0.9305 (16)	-0.1754 (28)	$2 \cdot 1$ (5)
$\mathbf{H}\left(10^{\prime}\right)$	-0.0522 (30)	0.8243 (18)	-0.2035 (30)	3.6 (6)
H(10')	-0.0107 (30)	0.8935 (17)	-0.0305 (30)	$3 \cdot 4$ (6)
H(11)	-0.7791 (29)	0.7994 (17)	-0.0980 (29)	$3 \cdot 0$ (5)
H(11')	-0.7513 (32)	0.7544 (19)	0.0578 (35)	$4 \cdot 1$ (7)
H(11")	-0.7637 (28)	0.6917 (18)	-0.1159 (29)	$3 \cdot 3$ (6)
$\mathrm{H}(21)$	0.1629 (40)	0.3780 (23)	$0 \cdot 3919$ (39)	6.9 (9)
H(22)	0.4958 (30)	$0 \cdot 1225$ (16)	0.6473 (29)	$2 \cdot 9$ (5)
H(25)	1.0412 (31)	0.2238 (17)	0.5392 (29)	$3 \cdot 2$ (6)
H(26)	0.8418 (24)	0.2965 (14)	0.4613 (24)	$1 \cdot 0$ (4)
$\mathrm{H}(27)$	0.4155 (30)	0.2379 (17)	0.5184 (29)	3.0 (6)
H(28)	0.6419 (28)	0.3728 (16)	0.4083 (27)	$2 \cdot 6$ (5)
H(30)	0.4506 (27)	-0.0277 (15)	$0 \cdot 6805$ (27)	2.5 (5)
$\mathrm{H}\left(30^{\prime}\right)$	0.5447 (28)	-0.0598 (16)	0.8340 (28)	$2 \cdot 7$ (5)
$\mathrm{H}\left(30^{\prime \prime}\right)$	0.5067 (26)	0.0423 (16)	0.8561 (26)	$2 \cdot 4$ (5)
H(31)	$1 \cdot 2093$ (30)	0.0539 (18)	$0 \cdot 6840$ (30)	$3 \cdot 4$ (6)
H(31)	$1 \cdot 2123$ (30)	$0 \cdot 1620$ (19)	0.6903 (31)	3.6 (6)
H(31)	$1 \cdot 1529$ (29)	0.0856 (17)	0.5201 (31)	$3 \cdot 4$ (6)

refinement. The present study was initiated to resolve this problem structure and clarify its origins.

Since there was an expectation that the structure would always be a problem with data taken at room temperature, the LT structure was examined first. Surprisingly, the refinement of the structure converged rapidly and smoothly. The H atoms were clearly seen in the difference map and ultimately included in the refinement. Unexpectedly, the refinement of the room-temperature structure also converged in a straightforward fashion. A review of the correlation coefficients revealed none greater than 0.56 for the RT case and 0.52 for LT, both of which were related to components of the thermalmotion tensor of individual atoms. In fact, the only problem with the structures was the partial disorder of the carbonyl and hydroxyl O atoms of the acid

Table 5. Comparative bond lengths (\AA) for the three studies of the structure of 3,4-dimethoxycinnamic acid

	GRD	RT	LT
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 39$ (3)	1.385 (4)	1.400 (3)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.42 (3)	1.401 (4)	1.403 (3)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.40 (2)	$1 \cdot 383$ (4)	$1 \cdot 395$ (3)
$\mathrm{C}(21)-\mathrm{C}(26)$	1.48 (3)	1.376 (4)	1.387 (3)
$\mathrm{C}(1)-\mathrm{C}(7)$	1.45 (2)	1.453 (4)	1.464 (3)
$\mathrm{C}(21)-\mathrm{C}(27)$	1.50 (2)	1.472 (4)	1.466 (3)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.34 (3)	1.392 (4)	$1 \cdot 388$ (3)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.38 (2)	1.376 (4)	1.389 (3)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.41 (2)	1.403 (4)	1.405 (3)
$\mathrm{C}(23)-\mathrm{C}(24)$	1.49 (2)	1.404 (4)	1.405 (3)
$\mathrm{C}(3)-\mathrm{O}(3)$	1.40 (2)	1.365 (3)	1.364 (3)
$\mathrm{C}(23)-\mathrm{O}(23)$	1.30 (1)	$1 \cdot 365$ (3)	$1 \cdot 363$ (2)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.34 (3)	1.375 (5)	1.375 (3)
$\mathrm{C}(24)-\mathrm{C}(25)$	1.33 (3)	1.380 (4)	$1 \cdot 392$ (3)
$\mathrm{C}(4)-\mathrm{O}(4)$	1.37 (3)	$1 \cdot 370$ (3)	$1 \cdot 369$ (3)
$\mathrm{C}(24)-\mathrm{O}(24)$	1.43 (2)	1.367 (3)	$1 \cdot 362$ (2)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.43 (3)	1.392 (5)	1.386 (3)
$\mathrm{C}(25)-\mathrm{C}(26)$	1.37 (3)	1.400 (4)	1.394 (3)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.31 (2)	1.324 (4)	1.332 (3)
$\mathrm{C}(27)-\mathrm{C}(28)$	$1 \cdot 30$ (2)	1.311 (4)	1.323 (3)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.54 (3)	1.463 (4)	1.464 (3)
$\mathrm{C}(28)-\mathrm{C}(29)$	1.49 (3)	1.468 (4)	1.469 (3)
$\mathrm{C}(9)-\mathrm{O}(1)$	1.22 (2)	1.272 (4)	1.287 (3)
$\mathrm{C}(29)-\mathrm{O}(21)$	1.27 (2)	1.268 (3)	1.287 (3)
$\mathrm{C}(9)-\mathrm{O}(2)$	1.27 (3)	1.256 (4)	1.257 (3)
$\mathrm{C}(29)-\mathrm{O}(22)$	1.27 (3)	1.269 (3)	1.258 (3)
$\mathrm{C}(10)-\mathrm{O}(3)$	1.46 (2)	1.420 (4)	1.427 (3)
$\mathrm{C}(30)-\mathrm{O}(23)$	1.41 (2)	1.422 (4)	1.432 (3)
$\mathrm{C}(11)-\mathrm{O}(4)$	1.53 (2)	1.422 (4)	1.428 (3)
$\mathrm{C}(31)-\mathrm{O}(24)$	1.53 (2)	1.436 (4)	1.430 (3)
$\mathrm{O}(1)-\mathrm{H}(1)$		1.08 (5)	0.98 (4)
$\mathrm{O}(21)-\mathrm{H}(21)$		$1 \cdot 19$ (5)	1.04 (3)
$\mathrm{O}(2) \cdots \mathrm{H}(21)$		1.44 (5)	1.59 (3)
$\mathrm{O}(22) \cdots \mathrm{H}(1)$		1.57 (5)	1.65 (4)
$\mathrm{C}-\mathrm{H}$ range		0.92-1.05	0.91-1.01

groups. Clearly, the problems associated with the original structure stem solely from the lack of observed reflections and not from the presence of pseudocenters of symmetry.

The pseudocenter of symmetry in the LT structure, calculated as the centroid of the non-H atoms of the dimer, is located at a general position: $0 \cdot 217,0.433$, 0.319 . The slight observed deviation from an inversion center occurs because the two molecules are not exactly coplanar; although each individual molecule is reasonably planar (largest deviations are 0.086 and $0.053 \AA$, respectively), the dihedral angle has a non-zero value of $4 \cdot 2^{\circ}$ which causes significant deviations at the methoxy ends of the dimer.

A review of the packing in the LT structure reveals several $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions which, although weak, are noteworthy. First, as seen in Fig. 2, the molecules pack in planar sheets with the carboxyl O atoms interacting with H atoms from neighboring benzene rings. Not seen in Fig. 2 are the head-to-tail interactions between the dimers wherein the methoxy O atoms interact with neighboring methoxy $-\mathrm{CH}_{3}$ groups. The shorter of these contacts vary from 2.52 to $2.71 \AA$. It is interesting to note that two of the

Table 6. Comparative bond angles $\left({ }^{\circ}\right)$ for the three studies of the structure of 3,4-dimethoxycinnamic acid

	GRD	${ }^{\text {RT }}$	LT
	${ }_{119}^{119(1)}$		
	${ }_{112}^{112}$ (1)	${ }^{11887} 18$	12)
\xrightarrow{C}	${ }_{\substack{122(1) \\ 118 \\ \text { 112 }}}$		(2)
	${ }^{1212(1)}$	${ }^{12125}$	${ }^{12066}$
		${ }^{118773}$	(194122)
	(124(1)	${ }_{\text {l }}^{12545}$	(1250 12
	(120 (1)	${ }^{11500(3)}$	(2)
\xrightarrow{C}	${ }_{125}^{125(1)}$	${ }_{1200}^{1202(3)}$	(2)
	${ }_{102}^{117(1)}$	${ }^{11450} 1183$	${ }_{\text {lilis }}^{1143}$
	(1243)	- 12538	
	(125 (1)	${ }_{\text {l }}^{122014} 1$	${ }_{\substack{12022 \\ 1022 \\ 1202}}$
\xrightarrow{C}	${ }_{121}^{115} 12$ (1)	${ }_{\substack{12088 \\ 12084 \\(4)}}$	$\xrightarrow{1205}$
\xrightarrow{C}	(129 (1)		(2)
			${ }_{\text {l }}^{122262}$
	${ }_{119}^{117(1)}$	${ }_{\substack{11894(3) \\ 199}}$	(2)
	114 11		119012
-		${ }_{\substack{1230 \\ 1273 \\ 127}}$	
	${ }_{\substack{16 \\ 116(1)}}$		1178
	${ }_{\text {lita (1) }}^{11}$	${ }_{\substack{1170 \\ 112(3) \\ 12(3)}}$	(170(2)
		${ }_{117}^{108(2)}$	(2)
		${ }_{188}^{169} 18$	(1)
$\xrightarrow{\text { chen }}$		${ }_{1119}^{112}$	(120 (1)

shortest $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts $\left[\mathrm{O}(2) \cdots \mathrm{H}(26)^{\prime}, \quad 2 \cdot 52\right.$; $\mathrm{O}(22) \cdots \mathrm{H}(6)^{\prime \prime}, \quad 2 \cdot 57 \AA$] involve those carboxyl oxygens with the greater carbonyl character while contacts involving the other two oxygens with the lesser carbonyl character are much longer: $\mathrm{O}(1) \cdots \mathrm{H}(5)^{\prime \prime}, \quad 2 \cdot 71, \quad \mathrm{O}(21) \cdots \mathrm{H}(25)^{\prime}, \quad 2 \cdot 65 \AA$. This suggests that the partial ordering of the acid groups reflects a sensitivity to their environment, a carbonyl oxygen being a much better hydrogen-bond acceptor than a hydroxyl oxygen.

Database studies

As shown in Table 1 above, of the 11691 structures in $P \overline{1}, 1166$ have $Z=4$. Identification of those structures with pseudoinversion symmetry was accomplished with a program which calculates all angles
between mean planes of all chemical residues in the structures (minimum number of residues $=2$) and which retrieves a structure if any one interplanar angle is less than a specified value. When this tolerance value was set at $5^{\circ}, 68$ hits were retrieved. These 68 structures were manually inspected and it was observed that in many cases the small interplanar angles are a matter of coincidence and occur between chemically distinct residues (salts, complexes). Some planar compounds were also found where the small interplanar angles are between parallel, stacked, symmetry-independent and chemically similar but not pseudoinversion-related molecules. For example, such molecules could be rotated about the

(a)

(b)

Fig. 1. Thermal parameters obtained (a) at 173 K and (b) at 296 K.

Fig. 2. Packing diagram showing the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ mediated layer structure of 3,4-dimethoxycinnamic acid.

Table 7. List of compounds in this study and their bibliographic references

AZFAPD10, (hexafluoroacetylacetonato- O, O^{\prime})[phenylazophenyl- $\mathrm{C}(1), \mathrm{N}(2)$]palladium, $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}, \alpha$ form, yellow. Etter, M. C. \& Sidle, A. R. (1983). J. Am. Chem Soc. 105, 641. Class 71, Coord 56, $R=0.045$, Sigf 2, Intf 3, $P \mathrm{~T}$.
BAHFAR, $\quad p$-hydroxy- α-\{1-[(1-methyl-2-phenoxyethyl)amino]ethyl\}benzyl alcohol hydrochloride (isoxsuprine hydrochloride), $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{3}^{+} . \mathrm{Cl}^{-}$. LEGER, J.-M., CARPY, A. \& Colleter, J.-C. (1981). Acta Cryst. B37, 1927. Class 17, Coord 94, $R=0.048$, Sigf 2, Intf $3, P T$.
CEMJOT, 3,4-dimethoxycinnamic acid, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$. Desiraju, G. R., Kamala, R., Kumari, B. H. \& Sarma, J. A. R. P. (1984). J. Chem. Soc. Perkin Trans. 2, p. 81. Class 17, Coord 54, $R=0.107$, Sigf 3, Intf 3, PT.
CISPID. dimethylpyrazolo[1,2-a]pyrazolo[1,2-b]benzotriazole-3,4-dicarboxylate, $\mathrm{C}_{15} \mathrm{H}_{13}$ $\mathrm{N}_{3} \mathrm{O}_{4}$. Bovio, B. (1984). J. Cryst. Spectrosc. 14, 369. Class 36, Coord $70, R=0.034$, Sigf 1, Intf 3, PT.
CPRDCA, cyclopropane-1,1-dicarboxylic acid, $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}$. Meester, M. A. M., Schenk, H. \& MacGillavry, C. H. (1971). Acta Cryst. B27, 630. Class 20, Coord 30, $R=$ 0.043 , Sigf I, Intf 3, PI.

CTZHPC, chloro(2,7,12-trimethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),2,11,-13,15-pentaene)copper(II) nitrate dihydrate $\left[\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{C}_{11} \mathrm{CuN}_{4}\right]\left[\mathrm{NO}_{3}\right] .2 \mathrm{H}_{2} \mathrm{O}$. CAIRA, M. R., Nassimbeni, L. R. \& Woolley, P. R. (1975). Acta Cryst. B31, 1334. Class 83, Coord 56, $R=0 \cdot 108$, Sigf 4 , Intf $3, P \bar{T}$.
DAPPOZ, tricarbonyl-(μ_{2}-diphenylphosphino)-(η^{3}-cyclopentadienyl)triphenylphosphineplatinumtungsten, $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Pt}$ W. Powell. J.. Sawyer, J. F. \& Smith. S. J (1985). J. Chem. Soc. Chem. Commun. p. 1312. Class 86. Coord 90. $R=0 \cdot 049$. Sigf 3, Intf $3, P$ T.
DEPKIS, 1,4-diazathianthrene, $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}_{2}, 163 \mathrm{~K}$. Larson, S. B., Simonsen, S. H., Lam, W. W., Martin, G. E., LindSay. C. M. \& Smith, K. (1985). Acta Cryst. C41, 1784. Class 39, Coord 40. $R=0.039$, Sigf 1 . Intf $3, P T$.

DEPZIH, octadecamethylcyclononaphosphazene, $\mathrm{C}_{18} \mathrm{H}_{54} \mathrm{~N}_{9} \mathrm{P}_{9}$. Oakley, R. T.. Rettig, S. J., Paddock, N. L. \& Trotter, J. (1985). J. Am. Chem. Soc. 107, 6923. Class 64, Coord 180, $R=0.040$, Sigf 0 , Intf 3, PT.
DEXCOY. $\quad 1,2,3,4,4 \mathrm{a}, 9,9 \mathrm{a}, 10$-octahydro-syn-17-methyl-9,10(1'. 2^{\prime})-benzeno-1,4-methanoanthracene, $\mathrm{C}_{22} \mathrm{H}_{22}$. Lindner, H. J., Lenoir, D. \& Butler, D. N. (1985). Chem. Ber. 118. 363. Class 31, Coord 87, $R-0.061$, Sigf 1, Intf 3, PT.
DOTWAK, 2,2-ethylenedioxy-1-hydroxytricyclo[10.6.0.0 ${ }^{13,18}$]octadeca-13,15,17-triene, $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$. Cotritois, A., Benabicha, F., Gregoire, B. \& Carre. M. C. (1986). Acta Cryst. C42, 868. Class 38, Coord 100, $R=0.060$, Sigf 2. Intf 3, $P \mathrm{~T}$.
FEDLEF, (pentamethylcyclopenta-2,4-diene-1-dithiocarboxylato- S, S^{\prime})bis(triphenylphosphinejcopper, $\mathrm{C}_{47} \mathrm{H}_{4} \mathrm{CuP}_{2} \mathrm{~S}_{2}$. Otto, H. \& Werner, H. (1987). Chem Ber. 120 97. Class 86. Coord 194, $R=0 \cdot 138$. Sigf 4. Intf 3, PT .

FERTHF, tris(ferrocenyl)(2-tetrahydrofuranyl)methane, $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{Fe}_{3} \mathrm{O}$. Hanic, F Sevcik, J. \& McGrandy, E. L. (1970). Chem. Zvesti, 24, 81. Class 73, Coord 78. $R=$ 0.063, Sigf 3. Intf 3. PT.

HALOPE, $\quad N$-\{2-[4-(5-chloro-2-oxo-]-benzimidazolinyl)piperidinolethyl\}-p-fluorobenzamide (halopemide), $\mathrm{C}_{2}, \mathrm{H}_{22} \mathrm{C}_{11} \mathrm{FN}_{4} \mathrm{O}_{2}$, antiautistic, antipsychotic. Van Opdenbosch. N., Weyland, M., Evrard, G. \& Durant, F. (1980). Acta Cryst. B36, 965. Class 35 Coord 58, $R-0.090$. Sigf 0 . Intf $3, P \mathrm{~T}$.
IMMAZO10, 2 -imino-3-methyl-5-methoxycarbonylmethylene-1,3-thiazolidin-4-one methanol solvate, $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} .0 \cdot 5 \mathrm{CH}_{4} \mathrm{O}$. Adman; E., Jfnsen, L. H. \& Warrener, R. N. (1975). Acta Cryst. B31, 1915. Class 41, Coord 42, $R \cdots 0 \cdot 055$, Sigf 0. Intf 3, PT.

MIBDTO, 3 -methoxyimino-1, 2-benzodithiole-1,1-dioxide. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{3} \mathrm{~S}_{2}$. Ferrari. M. B., Capacchi, L. C. \& Fava. G. G.. (1973). Crist. Struct. Commun. 2, 185. Class 39. Coord 28, R 0.104, Sigf 2. Intf 2, PT.
MPPHAZ10. 6-methyl-2,2,4,4-tetraphenyldiphospha-1.3,5-triazine, $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{P}_{2}$. Ahmed. F. R. \& Pollard, D. R. (1971). Acta Cryst. B27. 163. Class 64, Coord 98, $R=0.067$. Sigf 3, Intf 3, $P \overline{1}$.
NAPTPR, 2,7-(1,8-naphthyridino)-1,4,7,10,13,16-hexaoxahexadeca-1.16-diyl. $\mathrm{C}_{1 \times} \mathrm{H}_{24}-$ $\mathrm{N}_{2} \mathrm{O}_{6}$. Newkome, G. R., Garbis, S. J., Majestic, V. K.. Fronclek, F. R. \& Chiari, G. (1981) J. Org. Chem. 46, 833. Class 40, Coord 100, $R-0.055$, Sigf 3. Intf 3, $P \overline{1}$.

ODECYA, 4-octadecynoic acid, $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2}$. Mo, F. (1979). Acta Cryst. B35, 2135, Class 1, Coord 102, $R=0.071$, Sigf 3, Intf 1, PT .
PACYPT, cis-bis(phenylacetylido)bis(triphenylphosphine)platinum(II), $\quad \mathrm{C}_{52} \mathrm{H}_{40} \mathrm{P}_{2} \mathrm{Pt}$. Bonamico, M., Dessy, G., Fares, V., Russo. M. V. \& Scaramuzza. L. (1977). Cryst. Siruct. Commun. 6, 39. Class 71, Coord 110, $R=0.110$, Sigf 4, Intf 1. PT.
PHNQUN10, 7-hydroxy-2,8-dimethoxy-1,4-phenanthrenequinone (cypripedin). $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5}$. Bartsch, H.-H., Schmalle, H. W., Jarchow, O. H., Hausen, B. M. \& Schulz, K.-H. (1986). Actu Cr.st. C42, 322. Class 59, Coord 66, $R=0.041$, Sigf 2. Intf 3, PT.
stacking axis. Removal of these two types of structures resulted in around 20 entries where symmetryindependent molecules are related by a pseudocenter or a pseudotranslation. In $P \overline{1}$ for $Z=4$, a pseudoinversion located at x_{c}, y_{c}, z_{c} is equivalent to a pseudotranslation, $x_{t}, y_{t}, z_{t}=2 x_{c}, 2 y_{c}, 2 z_{c}$, and so either of these representations is equally appropriate.

Table 7 lists the refcodes and bibliographic information for 18 of the resulting structures. Fig. 3 gives the structural formulae of these compounds. In

Table 8. Coordinates of the pseudoinversion centers for the compounds in this study

Refcode AZFAPD 10 BAHFAR CEMJOT CISPID
CPRDCA
CTZHPC
DAPPOZ
DEPKIS
DEPZIH
DEXCOY
DOTWAK
FEDLEF
FERTHF
HALOPE HALOPE
IMMAZOI
MIBDTO
MPPHAZ10
NAPTPR
ODECYA
PACYPT
PHNQUNIO

x	y	z
0.74	0.75	0.25
0.75	0.74	0.25
0.22	0.43	0.32
0.48	0.74	0.51
0.25	0.44	0.68
0.50	0.25	0.50
0.26	0.50	0.25
0.57	0.32	0.57
0.25	0.00	0.75
0.81	0.27	0.24
0.00	0.26	0.24
0.68	0.21	0.42
0.36	0.67	0.75
0.25	0.50	0.26
0.49	0.55	0.24
0.86	0.25	0.24
0.26	0.25	0.50
0.74	0.00	0.75
0.25	0.50	0.50
0.77	-0.01	0.25
0.30	0.28	0.52

all cases, the unit-cell dimensions were checked and the cells reduced so as to confirm the space-group assignments. No errors or additional crystallographic symmetry relationships were found. Fig. 4 shows stereoviews of the structures from which it may be noted that the deviations from the pseudocenter (or pseudotranslation) are very minor. Purely geometrical considerations suggest that the most likely coordinates of the pseudocenters should include the 'special' values $0, \frac{1}{4}, \frac{1}{2}$ and $\frac{3}{4}$. Table 8 shows that this indeed is often the case. It may be shown that even for those structures in which the pseudocenter lies at a 'general' position (CEMJOT, DEPKIS), a redefinition of the unit cell will enable at least one of the pseudocenter coordinates to be 'special'.

A rough classification of these entries is possible in terms of the deviation of the molecular structure from pseudosymmetry. Fig. 4 shows that in the structures CEMJOT, CTZHPC, DOTWAK, PHNQUN and MIBDTO the pseudocenter is nearly perfect. More commonly, the pseudocenter relates only a part of the symmetry-independent molecules while there are variations in the other part which disturb the pseudocenter. These variations could be conformational in nature as in AZFAPD (trifluoromethyl group), BAHFAR, BUFNEW (phenyl ring), CISPID (methyl group), FEDLEF (cyclopentadienyl ring), FERTHF (tetrahydrofuran ring), HALOPE (benzoyl group), MPPHAZ (part of a macrocycle) and ODECYA (carboxylate group). In CPRDCA, the molecules would be related by a pseudocenter if the hydrogen-bonded catemer of carboxyl groups were completely disordered. However, the structure is ordered and to that extent, deviates from a pseudocenter. In the structure of DAPPOZ, the diphenylphosphine and triphenylphosphine groups form a hydrocarbon envelope. While the individual phenyl rings deviate considerably from a pseudoinversion relationship, their combined
envelopes may, to an approximation, be considered as related by the pseudocenter. The structure of DEPZIH is similar in that while the overall macrocyclic molecules are related approximately by a pseudocenter, the individual fragments deviate considerably. In the structure of DEPKIS, the deviation from pseudoinversion is to the extent that an aromatic $=\mathrm{C}-\mathrm{H}$ group differs from a heterocyclic $=\mathrm{N}$ atom.

Adoption of higher approximate symmetries

The adoption of multiple molecules in the asymmetric unit is an entropically unfavorable process. Since crystallization in general is inherently so disadvantageous from an entropic viewpoint, this further entropy decrease that accompanies the presence of symmetry-independent molecules in the crystal must be compensated by a further decrease in the potential energy of intermolecular interaction. Therefore, the phenomenon could be expected when the directional requirements of the individual intermolecular interactions are incompatible with each other in a situation where there is only a single molecule in the asymmetric unit. In this respect, this
phenomenon is a reflection of conflicting demands on the packing.

A true center of symmetry is always favorable from a packing viewpoint. When a motif comprising a centrosymmetric dimer is packed translationally, the result is a $P \overline{1}$ structure with $Z=2$. When the same motif is packed employing a 2_{1} axis, the result is a $P 2_{1} / c$ structure with $Z=4$. These two alternatives are indeed very common in organic crystals with around 10000 and 20000 examples each. It is possible to conceive of $P \overline{1}$ structures with pseudocenters of inversion as an uncommon, intermediate situation, where the centrosymmetric dimer motif is unable to pack with 2_{1} axes into $P 2_{1} / c \quad Z=4$, but where additional packing requirements over and above the translational $P \overline{1} \quad Z=2$ packing are present. The motifs pack therefore with pseudocenters of inversion but with minor variations in molecular conformation between symmetryindependent molecules which mitigate somewhat the adverse entropic factors.

The question of whether or not additional centers of symmetry adversely affect the process of leastsquares refinement and ultimately the bond parameters is complicated by the fact that pseudocenters

Fig. 3. Structural formulae of the compounds in this study.

BAHFAR

CISPID

CPRDCA

CTZHPC

DAPPOZ

DEPKIS

DEPZIH

Fig. 4. Stereodrawings of the asymmetric units of the structures in this database study. Note that a pseudotranslation is equivalent to a pseudoinversion in $P \Upsilon, Z=4$.

DEXCOY

HALOPE

DOTWAK

FEDLEF

MIBDTO

FERTHF

MPPHAZ10
Fig. 4 (cont.) Stereodrawings of the asymmetric units of the structures in this database study.

NAPTPR

PACYPT

PHNQUN10

Fig. 4 (cont.) Stereodrawings of the asymmetric units of the structures in this database study.
located in special positions where all three coordinates are either $0, \frac{1}{4}, \frac{1}{2}$ or $\frac{3}{4}$ (more commonly thought of as pseudotranslations of $0, \frac{1}{2}, 1$, etc.) give rise to superlattices. Approximately half of the structures listed in Table 8 fall into this category and yet only a few authors reported being aware of the superlattice. Complications during the least-squares refinement of superlattices are well known. The refinement of the crystal structure of 3,4-dimethoxycinnamic acid presented here strongly suggests, however, that a pseudocenter located in a 'general' position does not adversely affect the refinement. It should be reemphasized, however, that at least one coordinate of such a 'general' pseudocenter can, by suitable axial transformation, be converted to a 'special' value of $\frac{1}{4}$, $\frac{1}{2}$ etc. In the CEMJOT case, the pseudocenter at $0.22,0.43,0.32$ is equivalent to a pseudocenter at $0.22,0.43,0.75$ in a cell which is obtained by the transformation [$100,01 \overline{1}, 001]$. To confirm our suggestion that 'general' pseudocenters do not cause refinement problems, a review of references contain-
ing such structures was conducted. The results were unenlightening primarily because these structures are few in number, variable in quality, and were published for the most part without comment about refinement difficulties.

References

Allen, F. H., Kennard, O. \& Taylor, R. (1983). Acc. Chem. Res. 16, 146-151.
Desiraju, G. R. (1987). Editor. Organic Solid State Chemistry. Amsterdam: Elsevier.
Desiraju, G. R. (1989). Crystal Engineering. The Design of Organic Solids. Amsterdam: Elsevier.
Desiraju, G. R., Kamala, R., Kumari, B. H. \& Sarma, J. A. R. P. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 181-189.

Kitaigorodskir, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press.
Padmaja, N., Ramakumar, S., \& Viswamitra, M. A. (1990). Acta Cryst. A46, 725-730.
Scheffer, J. R. (1987). Organic Chemistry in Anisotropic Media, Tetrahedron Symposium-in-Print, No. 29. Tetrahedron, 43, 1197-1737.

[^1]: * Lists of anisotropic thermal parameters and structure amplitudes for RT and LT have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53472 (18 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

